DIAGNOSING THE OBSERVED SEASONAL CYCLE OF ATLANTIC SUBTROPICAL MODE WATER USING POTENTIAL VORTICITY AND ITS ATTENDANT THEOREMS

2012/02/24

Guillaume Maze
Laboratoire de physique des oceans, Ifremer, Brest (FRANCE)

John Marshall
Massachusetts Institute of Technology, Cambridge (USA)
EDW Formation Map according to the Walin’s framework

Maze et al, JPO, 2009

Capture only the air-sea heat flux forcing
Does not distinguish low vs high EDW stratification
3 years timeserie of PV on the EDW isopycnal surface

EDW seasonal PV loss:
true mode water
being formed

OCCA ocean state estimate
1x1 degree
DIAGNOSING THE OBSERVED SEASONAL CYCLE OF ATLANTIC SUBTROPICAL MODE WATER USING POTENTIAL VORTICITY AND ITS ATTENDANT THEOREMS

Flux form of the PV conservation equation

- PV is conserved between EDW isopycnals (impermeability theorem)
- PV can only be reduced at the surface (boundary intersection)

What processes drive PV reduction in EDW formation at the surface?

Air-sea buoyancy loss

Down front winds

Diabatic forcing

Mechanical forcing

What are their relative contributions? but first ...
Vertical PV flux (3D):

\[J_z = \omega_z \frac{\partial \sigma}{\partial t} + \mathbf{k} \cdot \left(\frac{\partial \mathbf{u}}{\partial t} + \nabla \pi \right) \times \nabla \sigma \]

no Q\textsubscript{net}, no Wind-Stress!
Vertical PV flux mapped over the EDW outcropping region only:

\[
J_z(X_i, h) = \int_{X_j} J_z(t, x, y, z = h) \mathcal{H}_{\text{mld}}^h(t, x, y) \, dX_j
\]

\[
\mathcal{H}_{\text{mld}}^h(t, x, y) = \begin{cases}
1 & \text{if } \sigma \text{EDW} - \frac{\delta \sigma}{2} < \sigma(z = h) \\
& \sigma(z = h) \leq \sigma \text{EDW} + \frac{\delta \sigma}{2} \\
0 & \text{mld} \leq h
\end{cases}
\]

OCCA ocean state estimate

1x1 degree

Schematic view of EDW formation and circulation

EDW is formed, then circulate and ventilate the EDW pool

Small contribution from the mechanical forcing (13%),
but this is a 1x1 degree ocean state
DIAGNOSING THE OBSERVED SEASONAL CYCLE OF ATLANTIC SUBTROPICAL MODE WATER USING POTENTIAL VORTICITY AND ITS ATTENDANT THEOREMS

DRAKKAR Eddy resolving simulation (1/12)
Maze et al, DSRII, sub.2012

![Snapshot (2003/03/16)](image)

Jz Diabatic

Jz Mechanic

PV gain

PV loss

Local mean

EDW mean
Key points

- Low PV EDW is mostly formed by diabatic forcing
- Mechanical contribution seems to be about 10-15% the total (at 1x1, 1/12 and more ...)

BUT

the EDW *mechanically* formed does not take the same pathway to the EDW core: more (and different) diagnostics are required to quantify formation at meso (and submeso) scales.
DIAGNOSING THE OBSERVED SEASONAL CYCLE OF ATLANTIC SUBTROPICAL MODE WATER USING POTENTIAL VORTICITY AND ITS ATTENDANT THEOREMS
PV on the EDW isopycnal surface:

EDW seasonal PV loss: true mode water being formed